Classical Algebra
Complex Numbers
Table of contents
Complex Numbers
Parent: Classical Algebra
Subject: Mathematics
Type: Semester
SL#: 2401291724
Status: Current

It follows from the properties of real numbers that, the square of a real number is never negative. Consequently, the elementary quadratic equation x2+1=0x^2+1=0, has no solution in the system of real numbers. Introduction of a new type of numbers, called complex numbers, has made it possible to provide solutions to the equation x2+1=0x^2+1=0, and also of the more general type of equations:

a0xn+a1xn1++an=0a_0x^n+a_1x^{n-1}+\ldots+a_n=0

Complex Numbers

Any complex number zz is an ordered pair of real numbers (a,b)(a,b), that satisfies the following condition (1), and the following laws of operations (2), and (3):

  1. (a,b)=(c,d)(a,b)=(c,d), if and only if a=ca=c, b=db=d. This is known as the condition of equality.

  2. (a,b)+(c,d)=(a+c,b+d)(a,b)+(c,d)=(a+c,b+d). This is known as the definition of addition.

  3. (a,b).(c,d)=(acbd,ad+bc)(a,b).(c,d)=(ac-bd,ad+bc). This is known as the definition of multiplication.

Theorems for complex numbers

1. Addition of two complex numbers is commutative

Considering two complex numbers, z1=(a1,b1)z_1=(a_1,b_1), and z2=(a2,b2)z_2=(a_2,b_2). Then, as per the theorem, z1+z2=z2+z1z_1+z_2=z_2+z_1.

z1+z2=(a1,b1)+(a2,b2)=(a1+a2,b1+b2)\begin{align*} z_1+z_2&=(a_1,b_1)+(a_2,b_2)\\ &=(a_1+a_2,b_1+b_2) \end{align*}

But, a1+a2=a2+a1a_1+a_2=a_2+a_1, and, b1+b2=b2+b1b_1+b_2=b_2+b_1, since addition of real numbers is commutative.

z1+z2=(a1+a2,b1+b2)=(a2+a1,b2+b1)=(a2,b2)+(a1,b1)=z2+z1\begin{align*} \therefore z_1+z_2&=(a_1+a_2,b_1+b_2)\\ &=(a_2+a_1,b_2+b_1)\\ &=(a_2,b_2)+(a_1,b_1)=z_2+z_1 \end{align*}

Therefore, the addition of two complex numbers is commutative:

z1+z2=z2+z1z_1+z_2=z_2+z_1

2. Addition of complex numbers is associative.

Considering three complex numbers, z1=(a1,b1)z_1=(a_1,b_1), z2=(a2,b2)z_2=(a_2,b_2), and z3=(a3,b3)z_3=(a_3,b_3). Then, as per the theorem, z1+(z2+z3)=(z1+z2)+z3z_1+(z_2+z_3)=(z_1+z_2)+z_3.

z1+(z2+z3)=(a1,b1)+{(a2,b2)+(a3,b3)}=(a1,b1)+(a2+a3,b2+b3)=(a1+(a2+a3),b1+(b2+b3))\begin{align*} z_1+(z_2+z_3)&=(a_1,b_1)+\{(a_2,b_2)+(a_3,b_3)\}\\ &=(a_1,b_1)+(a_2+a_3,b_2+b_3)\\ &=(a_1+(a_2+a_3),b_1+(b_2+b_3)) \end{align*}

But, a1+(a2+a3)=(a1+a2)+a3a_1+(a_2+a_3)=(a_1+a_2)+a_3, and b1+(b2+b3)=(b1+b2)+b3b_1+(b_2+b_3)=(b_1+b_2)+b_3, since addition of real numbers is associative.

z1+(z2+z3)=(a1+(a2+a3),b1+(b2+b3))=((a1+a2)+a3,(b1+b2)+b3)=(a1+a2,b1+b2)+(a3,b3)={(a1,b1)+(a2,b2)}+(a3,b3)=(z1+z2)+z3\begin{align*} \therefore z_1+(z_2+z_3)&=(a_1+(a_2+a_3),b_1+(b_2+b_3))\\ &=((a_1+a_2)+a_3,(b_1+b_2)+b_3)\\ &=(a_1+a_2,b_1+b_2)+(a_3,b_3)\\ &=\{(a_1,b_1)+(a_2,b_2)\}+(a_3,b_3)\\ &=(z_1+z_2)+z_3 \end{align*}

Therefore, the addition of complex numbers is associative:

z1+(z2+z3)=(z1+z2)+z3z_1+(z_2+z_3)=(z_1+z_2)+z_3

3. Multiplication of two complex numbers is commutative

Considering two complex numbers, z1=(a1,b1)z_1=(a_1,b_1), and z2=(a2,b2)z_2=(a_2,b_2). Then, as per the theorem, z1.z2=z2.z1z_1.z_2=z_2.z_1.

z1.z2=(a1,b1).(a2,b2)=(a1a2b1b2,a1b2+b1a2)\begin{align*} z_1.z_2&=(a_1,b_1).(a_2,b_2)\\ &=(a_1a_2-b_1b_2,a_1b_2+b_1a_2) \end{align*}

But, a1a2=a2a1a_1a_2=a_2a_1, b1b2=b2b1b_1b_2=b_2b_1, a1b2=b2a1a_1b_2=b_2a_1, and b1a2=a2b1b_1a_2=a_2b_1, since the multiplication of real numbers is commutative.

z1.z2=(a1a2b1b2,a1b2+b1a2)=(a2a1b2b1,b2a1+a2b1)\begin{align*} \therefore z_1.z_2&=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)\\ &=(a_2a_1-b_2b_1,b_2a_1+a_2b_1) \end{align*}

But, b2a1+a2b1=a2b1+b2a1b_2a_1+a_2b_1=a_2b_1+b_2a_1, since addition of real numbers is commutative.

z1.z2=(a2a1b2b1,b2a1+a2b1)=(a2a1b2b1,a2b1+b2a1)=(a2,b2).(a1,b1)=z2.z1\begin{align*} \therefore z_1.z_2&=(a_2a_1-b_2b_1,b_2a_1+a_2b_1)\\ &=(a_2a_1-b_2b_1,a_2b_1+b_2a_1)\\ &=(a_2,b_2).(a_1,b_1)=z_2.z_1 \end{align*}

Therefore, the multiplication of two complex numbers is commutative.

z1.z2=z2.z1z_1.z_2=z_2.z_1

4. Multiplication of complex numbers is associative

Considering three complex numbers, z1=(a1,b1)z_1=(a_1,b_1), z2=(a2,b2)z_2=(a_2,b_2), and z3=(a3,b3)z_3=(a_3,b_3). Then, as per the theorem, z1.(z2.z3)=(z1.z2).z3z_1.(z_2.z_3)=(z_1.z_2).z_3.

z1.(z2.z3)=(a1,b1).{(a2,b2).(a3,b3)}=(a1,b1)(a2a3b2b3,a2b3+b2a3)=(a1(a2a3b2b3)b1(a2b3+b2a3),a1(a2b3+b2a3)+b1(a2a3b2b3))=(a1a2a3a1b2b3b1a2b3b1b2a3,a1a2b3+a1b2a3+b1a2a3b1b2b3)=((a1a2b1b2)a3(a1b2+b1a2)b3,(a1a2b1b2)b3+(a1b2+b1a2)a3)=(a1a2b1b2,a1b2+b1a2).(a3,b3)={(a1,b1).(a2,b2)}.(a3,b3)=(z1.z2).z3\begin{align*} z_1.(z_2.z_3)&=(a_1,b_1).\{(a_2,b_2).(a_3,b_3)\}\\ &=(a_1,b_1)(a_2a_3-b_2b_3,a_2b_3+b_2a_3)\\ &=(a_1(a_2a_3-b_2b_3)-b_1(a_2b_3+b_2a_3),a_1(a_2b_3+b_2a_3)+b_1(a_2a_3-b_2b_3))\\ &=(a_1a_2a_3-a_1b_2b_3-b_1a_2b_3-b_1b_2a_3,a_1a_2b_3+a_1b_2a_3+b_1a_2a_3-b_1b_2b_3)\\ &=((a_1a_2-b_1b_2)a_3-(a_1b_2+b_1a_2)b_3,(a_1a_2-b_1b_2)b_3+(a_1b_2+b_1a_2)a_3)\\ &=(a_1a_2-b_1b_2,a_1b_2+b_1a_2).(a_3,b_3)=\{(a_1,b_1).(a_2,b_2)\}.(a_3,b_3)\\ &=(z_1.z_2).z_3 \end{align*}

Therefore, multiplication of complex numbers is associative.

z1.(z2.z3)=(z1.z2).z3z_1.(z_2.z_3)=(z_1.z_2).z_3

Unit complex number

Complex numbers just like real numbers, when multipled with one, give the complex number itself. For example, considering a complex number, z1=(a1,b1)z_1=(a_1,b_1), as per the above statement, z1.1=z1z_1.1=z_1.

z1.1=(a1,b1).(1,0)=(a1.1b1.0,a1.0+b1.1)=(a1,b1)=z1\begin{align*} z_1.1&=(a_1,b_1).(1,0)\\ &=(a_1.1-b_1.0,a_1.0+b_1.1)\\ &=(a_1,b_1)=z_1 \end{align*} (a,b).(1,0)=(a,b)\therefore (a,b).(1,0)=(a,b)

Here, (1,0)(1,0), is said to be unit complex number, denoted by 11.

Negative of a complex number

Negative of a complex number z1z_1, is denoted by z1-z_1, is a complex number z2z_2, such that, z1+z2=0z_1+z_2=0.

Considering z1=(a1,b1)z_1=(a_1,b_1), and z2=(a2,b2)z_2=(a_2,b_2),

z1+z2=0(a1,b1)+(a2,b2)=(0,0)(a1+a2,b1+b2)=(0,0)\begin{align*} z_1+z_2=0\Rightarrow (a_1,b_1)+(a_2,b_2)=(0,0)\\ \Rightarrow (a_1+a_2,b_1+b_2)=(0,0) \end{align*}

From the above equation, we have, a1+a2=0a2=a1a_1+a_2=0\Rightarrow a_2=-a_1, and b1+b2=0b2=b1b_1+b_2=0\Rightarrow b_2=-b_1

z1=z2=(a2,b2)=(a1,b1)=(a1,b1)\therefore -z_1=z_2=(a_2,b_2)=(-a_1,-b_1)=-(a_1,b_1)

Thus, the negative of a complex number z1=(a,b)z_1=(a,b), is z1=(a,b)-z_1=-(a,b).

Subtraction of a complex number

Let two complex numbers be, z1=(a1,b1)z_1=(a_1,b_1), and z2=(a2,b2)z_2=(a_2,b_2). Their subtraction z1z2z_1-z_2, is:

z1z2=z1+(z2)=(a1,b1)+(a2,b2)=(a1a2,b1b2)\begin{align*} z_1-z_2&=z_1+(-z_2)\\ &=(a_1,b_1)+(-a_2,-b_2)\\ &=(a_1-a_2,b_1-b_2) \end{align*}

Therefore, z1z2=(a1a2,b1b2)z_1-z_2=(a_1-a_2,b_1-b_2).

Multiplicative inverse of a complex number

Multiplicative inverse, of any non-zero complex number z1z_1, which is denoted as z11z_1^{-1}, is a complex number z2z_2, so that, z1.z2=1z_1.z_2=1

Considering two complex numbers, z1=(a1,b1)z_1=(a_1,b_1), and z2=(a2,b2)z_2=(a_2,b_2).

z1.z2=1(a1,b1).(a2,b2)=(1,0)(a1a2b1b2,a1b2+b1a2)=(1,0)\begin{align*} z_1.z_2=1&\Rightarrow (a_1,b_1).(a_2,b_2)=(1,0)\\ &\Rightarrow (a_1a_2-b_1b_2,a_1b_2+b_1a_2)=(1,0) \end{align*}

From above, we have two equations,

a1a2b1b2=1b2=a1a21b1\begin{equation} a_1a_2-b_1b_2=1\Rightarrow b_2=\frac{a_1a_2-1}{b_1} \end{equation} a1b2+b1a2=0b2=b1a2a1\begin{equation} a_1b_2+b_1a_2=0\Rightarrow b_2=-\frac{b_1a_2}{a_1} \end{equation}

Comparing the two equations, we get,

a1a21b1=b1a2a1a12a2a1=b12a2(a12+b12)a2=a1a2=a1a12+b12\begin{align*} \frac{a_1a_2-1}{b_1}=-\frac{b_1a_2}{a_1}&\Rightarrow a_1^2a_2-a_1=-b_1^2a_2\\ &\Rightarrow (a_1^2+b_1^2)a_2=a_1\\ &\Rightarrow a_2=\frac{a_1}{a_1^2+b_1^2} \end{align*}

Putting the value of a2a_2 in (2)(2), we get:

b2=b1a1a1a12+b12=b1a12+b12b_2=-\frac{b_1}{a_1}\frac{a_1}{a_1^2+b_1^2}=\frac{-b_1}{a_1^2+b_1^2}

Now,

z11=z2=(a1a12+b12,b1a12+b12)\because z_1^{-1}=z_2=\left(\frac{a_1}{a_1^2+b_1^2},\frac{-b_1}{a_1^2+b_1^2}\right)\\ z11=(a1a12+b12,b1a12+b12)\begin{equation} \therefore z_1^{-1}=\left(\frac{a_1}{a_1^2+b_1^2},\frac{-b_1}{a_1^2+b_1^2}\right) \end{equation}

Division of a complex number

Considering two complex numbers, z1=(a1,b1)z_1=(a_1,b_1), and z2=(a2,b2)z_2=(a_2,b_2), where z2z_2 is a non-zero complex number.

z1z2=z1.z21=(a1,b1).(a2,b2)1=(a1,b1).(a2a22+b22,b2a22+b22)=(a1a2a22+b22b1b2a22+b22,a1b2a22+b22+b1a2a22+b22)=(a1a2b1b2a22+b22,a1b2+b1a2a22+b22)\begin{align*} \therefore \frac{z_1}{z_2}&=z_1.z_2^{-1}=(a_1,b_1).(a_2,b_2)^{-1}\\ &=(a_1,b_1).\left(\frac{a_2}{a_2^2+b_2^2},\frac{-b_2}{a_2^2+b_2^2}\right)\\ &=\left(\frac{a_1a_2}{a_2^2+b_2^2}-\frac{b_1b_2}{a_2^2+b_2^2},\frac{-a_1b_2}{a_2^2+b_2^2}+\frac{b_1a_2}{a_2^2+b_2^2}\right)\\ &=\left(\frac{a_1a_2-b_1b_2}{a_2^2+b_2^2},\frac{-a_1b_2+b_1a_2}{a_2^2+b_2^2}\right) \end{align*} z1z2=(a1a2b1b2a22+b22,a1b2+b1a2a22+b22)\therefore \frac{z_1}{z_2}=\left(\frac{a_1a_2-b_1b_2}{a_2^2+b_2^2},\frac{-a_1b_2+b_1a_2}{a_2^2+b_2^2}\right)

If the product of two complex numbers is zero, then atleast one of them is zero.

Considering two complex numbers, z1=(a1,b1)z_1=(a_1,b_1), z2=(a2,b2)z_2=(a_2,b_2), such that z1.z2=0z_1.z_2=0.

z1.z2=0(a1,b1).(a2,b2)=(0,0)(a1a2b1b2,a1b2+b1a2)=(0,0)\begin{align*} z_1.z_2=0&\Rightarrow(a_1,b_1).(a_2,b_2)=(0,0)\\ &\Rightarrow (a_1a_2-b_1b_2,a_1b_2+b_1a_2)=(0,0)\\ \end{align*}

We have two equations:

a1a2b1b2=0\begin{equation} a_1a_2-b_1b_2=0 \end{equation} a1b2+b1a2=0\begin{equation} a_1b_2+b_1a_2=0 \end{equation}

Let, z20z_2\ne0, then, a22+b220a_2^2+b_2^2\ne0

Multiplying (4)(4) by a2a_2, and (5)(5) by b2b_2, and adding:

a2(a1a2b1b2)+b2(a1b2+b1a2)=0a1a22b1b2a1+a1b22+b1a2b2=0a1(a22+b22)=0\begin{align*} &\Rightarrow a_2(a_1a_2-b_1b_2)+b_2(a_1b_2+b_1a_2)=0\\ &\Rightarrow a_1a_2^2-b_1b_2a_1+a_1b_2^2+b_1a_2b_2=0\\ &\Rightarrow a_1(a_2^2+b_2^2)=0 \end{align*}

Similarly multiplying (4)(4) by b2b_2, and (5)(5) by a2a_2, and subtracting, we have:

b1(a22+b22)=0b_1(a_2^2+b_2^2)=0

Therefore, from above, we have: a1=b1=0a_1=b_1=0. Thus, z1=0z_1=0, for z20z_2\ne0

Similarly, for z10z_1\ne0, we have z2=0z_2=0


Normal Form

A complex number, z=(a,b)z=(a,b), in the normal form, can be written as, z=a+biz=a+bi.

Addition in normal form

Let z1=(a,b)z_1=(a,b), and, z2=(c,d)z_2=(c,d). In normal form they can be written as, z1=a+ibz_1=a+ib, and z2=c+idz_2=c+id.

z1+z2=(a+ib)+(c+id)=(a+c)+i(b+d)\begin{align*} z_1+z_2&=(a+ib)+(c+id)\\ &=(a+c)+i(b+d) \end{align*}

Multiplication in normal form

Let z1=a+ibz_1=a+ib, and z2=c+idz_2=c+id. Therefore their multiplication will be:

z1.z2=(a+ib).(c+id)=(acbd)+i(ad+bc)\begin{align*} z_1.z_2&=(a+ib).(c+id)\\ &=(ac-bd)+i(ad+bc) \end{align*}

Multiplication can also be performed as real binomials, provided that i2=1i^2=-1. For example, considering two complex numbers, z1=a+ibz_1=a+ib, and z2=c+idz_2=c+id.

z1.z2=(a+ib).(c+id)=ac+i.ad+i.bc+i2.bd=acbd+i(ad+bc)\begin{align*} z_1.z_2&=(a+ib).(c+id)\\ &=ac+i.ad+i.bc+i^2.bd\\ &=ac-bd+i(ad+bc) \end{align*}

Example 1: Find out the product of two complex numbers 2+3i2+3i, and 3+i3+i.

(2+3i).(3+i)=(2.33.1)+(2.1+3.3)i=3+11i\begin{align*} (2+3i).(3+i)&=(2.3-3.1)+(2.1+3.3)i\\ &=3+11i \end{align*}

Example 2: Find out the result of division of two complex numbers 5+9i5+9i by 2+11i2+11i.

5+9i2+11i=(5+9i).(2+11i)1=(5+9i)(24+121+114+121i)=(10+99125+55+18125i)=(10912537125i)=10937i125\begin{align*} \frac{5+9i}{2+11i}&=(5+9i).(2+11i)^{-1}\\ &=(5+9i)\left(\frac{2}{4+121}+\frac{-11}{4+121}i\right)\\ &=\left(\frac{10+99}{125}+\frac{-55+18}{125}i\right)\\ &=\left(\frac{109}{125}-\frac{37}{125}i\right)\\ &=\frac{109-37i}{125} \end{align*}

Polar Form

Considering a complex number: z=a+ibz=a+ib. When represented in the complex plane, zz is represented by the point whose Cartesian co-ordinates are (a,b)(a,b), referred to two perpendicular lines as axes, the first co-ordinate axis being called the real axis, and the second the imaginary axis.

Taking the origin as the pole and the real axis as the initial line, let (r,θ)(r,\theta), as the polar coordinates of the point (a,b)(a,b). Then it can be concurred that, a=rcosθa=r\cos{\theta}, and, b=rsinθb=r\sin\theta. Geometrically, rr is said to be the distance between the points (a,b)(a,b), from origin. And this rr is the modulus of the complex number zz.

We know: a=rcosθa=r\cos\theta, and b=rsinθb=r\sin\theta.

rcosθ+rsinθ=a+br2cos2θ+r2sin2θ=a2+b2r2(cos2θ+sin2θ)=a2+b2\begin{align*} &\therefore r\cos\theta+r\sin\theta=a+b\\ &\Rightarrow r^2\cos^2\theta+r^2\sin^2\theta=a^2+b^2\\ &\Rightarrow r^2(\cos^2\theta+\sin^2\theta)=a^2+b^2 \end{align*}

We know: sin2θ+cos2θ=1\sin^2\theta+\cos^2\theta=1

r2(cos2θ+sin2θ)=a2+b2r2=a2+b2r=a2+b2\therefore r^2(\cos^2\theta+\sin^2\theta)=a^2+b^2\\ \Rightarrow r^2=a^2+b^2\Rightarrow r=\sqrt{a^2+b^2}

Therefore, the modulus of a complex number zz:

z=r=a2+b2|z|=r=\sqrt{a^2+b^2}

The argument of a polar form represented as Arg z\textnormal{Arg}\ z, are all values of θ\theta, satisfying the relations cosθ=ar\cos\theta=\frac ar, and sinθ=br\sin\theta=\frac br. Let's say, α\alpha is a value of θ\theta, satisfying the above relation, then Arg z=α+2nπ\textnormal{Arg}\ z=\alpha+2n\pi, where nn is an integer.

The principal argument of zz, also called the amplitude of zz, denoted by Arg z\textnormal{Arg}\ z, is defined to be the angle θ\theta which satisfies the ineqality π<θπ-\pi\lt\theta\le\pi. For example, lets say, θ=3π2\theta=\frac{3\pi}{2}, is an argument of zz, but not the principle argument, because it doesnt lie within the given inequality: π<θπ-\pi\lt\theta\le\pi.

Principle argument is also an argument. but within the argument set. Furthermore, the arguments cannot be termined from tan1ba\tan^-1{\frac ba}.

Example 3: Given a complex number: z=1+iz=-1+i, find the mod. z\textnormal{mod.}\ z, arg. z\textnormal{arg.}\ z, and express zz in polar form.

Given, z=1+iz=-1+i. Comparing it with z=rcosθ+rsinθz=r\cos\theta+r\sin\theta, we have:

rcosθ=1rsinθ=1r\cos\theta=-1\\ r\sin\theta=1

Modulus of zz:

z=r=a2+b2=12+12=2|z|=r=\sqrt{a^2+b^2}=\sqrt{-1^2+1^2}=\sqrt2

Argument of zz:

Arg. z=θ=cos1(12)=3π4\textnormal{Arg. }z=\theta=\cos^{-1}\left({\frac {-1}{\sqrt2}}\right)=\frac{3\pi}4

zz in polar form:

z=2(cos3π4+sin3π4i)z=\sqrt2\left(\cos\frac{3\pi}{4}+\sin\frac{3\pi}4i\right)

Example 3: Given a complex number: z=1iz=-1-i, find the mod. z\textnormal{mod.}\ z, arg. z\textnormal{arg.}\ z, and express zz in polar form.

Given, z=1iz=-1-i. Comparing it with z=rcosθ+rsinθz=r\cos\theta+r\sin\theta, we have:

rcosθ=1rsinθ=1r\cos\theta=-1\\ r\sin\theta=-1

Modulus of zz:

z=r=a2+b2=(1)2+(1)2=2|z|=r=\sqrt{a^2+b^2}=\sqrt{(-1)^2+(-1)^2}=\sqrt2

Argument of zz:

arg. z=cos1(1r)=cos1(12)=3π4,5π4arg. z=sin1(1r)=sin1(12)=5π4\textnormal{arg. }z=\cos^{-1}\left(-{1\over r}\right)=\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{3\pi}{4},\frac{5\pi}{4}\ldots\\ \textnormal{arg. }z=\sin^{-1}\left(-{1\over r}\right)=\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{5\pi}{4}\ldots arg. z=5π4\therefore \textnormal{arg. }z=\frac{5\pi}{4}

De Morgan's Theorem

If nn be any integer then:

(cosθ+isinθ)n=cosnθ+isinnθ\begin{align} (\cos{\theta}+i\sin{\theta})^n=\cos{n\theta}+i\sin n\theta \end{align}

If nn be a fraction, then one of the values of (cosθ+isinθ)n(\cos\theta+i\sin\theta)^n is:

(cosθ+isinθ)n=(cosnθ+isinnθ)\begin{align} (\cos\theta+i\sin\theta)^n=(\cos n\theta+i\sin n\theta) \end{align}

Case 1: nNn\in\N

For, n=1n=1:

(cosθ+isinθ)1=cosθ+isinθ=cos1.θ+isin1.θ\begin{align*} (\cos\theta+i\sin\theta)^1&=\cos\theta+i\sin\theta\\ &=\cos1.\theta+i\sin1.\theta \end{align*}

Let n=kn=k,

(cosθ+isinθ)k=coskθ+isinkθ\begin{align*} (cos\theta+i\sin\theta)^k=\cos k\theta+i\sin k\theta \end{align*} (cosθ+isinθ)k+1=(coskθ+isinkθ)(coskθ+isinkθ)=(coskθcosθsinkθsinθ)+i(sinkθcosθ+coskθsinθ)=cos(k+1)θ+isin(k+1)θ\begin{align*} \therefore (\cos\theta+i\sin\theta)^{k+1}&=(\cos k\theta+i\sin k\theta)(\cos k\theta+i\sin k\theta)\\ &=(\cos k\theta\cos\theta-\sin k\theta\sin\theta)+i(\sin k\theta\cos\theta+\cos k\theta\sin\theta)\\ &=\cos(k+1)\theta+i\sin(k+1)\theta \end{align*} (cosθ+isinθ)k+1=cos(k+1)θ+isin(k+1)θ\begin{align} \therefore (\cos\theta+i\sin\theta)^{k+1}=\cos(k+1)\theta+i\sin(k+1)\theta \end{align}

Case 2: n=m,nNn=-m, n\in\N

(cosθ+isinθ)n=(cosθ+isinθ)m=1(cosθ+isinθ)m=1cosmθ+isinmθ=cosmθisinmθ1[Conjugate multiplication]=cos(m)θ+isin(m)θ=cosnθ+isinnθ[n=m]\begin{align*} (\cos\theta+i\sin\theta)^n&=(\cos\theta+i\sin\theta)^{-m}\\ &=\frac{1}{(\cos\theta+i\sin\theta)^m}\\ &=\frac{1}{\cos m\theta+i\sin m\theta}\\ &=\frac{\cos m\theta-i\sin m\theta}{1}&&[\text{Conjugate multiplication}]\\ &=\cos(-m)\theta+i\sin(-m)\theta\\ &=\cos n\theta+i\sin n\theta&&[\because n=-m] \end{align*}

Therefore, the theorem holds true for all negative numbers.

Case 3: n=pq,{p,q}Z,q>0n=\frac{p}{q}, \{p,q\}\in\Z, q>0

(cospqθ+isinpqθ)q=cosp.θ+isinp.θ=(cosθ+isinθ)p \begin{align*} \left(\cos\frac{p}{q}\theta+i\sin\frac{p}{q}\theta\right)^q&=\cos p.\theta+i\sin p.\theta\\ &=(\cos\theta+i\sin\theta)^p \end{align*}

Therefore, one of the values of (cosθ+isinθ)p/q(\cos\theta+i\sin\theta)^{p/q} is:

(cosθ+isinθ)pq=(cospqθ+isinpqθ)\begin{align} (\cos\theta+i\sin\theta)^{\frac{p}{q}}=\left(\cos\frac{p}{q}\theta+i\sin\frac{p}{q}\theta\right) \end{align}

Therefore, one of the values of (cosθ+isinθ)n(\cos\theta+i\sin\theta)^n is (cosnθ+isinnθ)(\cos n\theta+i\sin n\theta).

n-th Root of a Complex Number

Considering a complex number: z=r(cosθ+isinθ)z=r(\cos\theta+i\sin\theta), where zCz\in C. In the above r=zr=|z|, which is known as the modulus of complex number zz. θ\theta is called the argument of zz, and written as arg(z)\text{arg}(z), and its value lies between:

π<arg(z)π\begin{align} -\pi<\text{arg}(z)\le\pi \end{align}

Considering the following:

 z=r[cos(θ+2kπ)+isin(θ+2kπ)],kZ z1/n=r1/n[cos(θ+2kπ)+isin(θ+2kπ)]1/n z1/n=r1/n[cos(θ+2kπn)+isin(θ+2kπn)]\begin{align*} &\ z=r[\cos(\theta+2k\pi)+i\sin(\theta+2k\pi)],&&k\in\Z\\ \Rightarrow\ &z^{1/n}=r^{1/n}[\cos(\theta+2k\pi)+i\sin(\theta+2k\pi)]^{1/n}\\ \Rightarrow\ &z^{1/n}=r^{1/n}\left[\cos\left(\frac{\theta+2k\pi}{n}\right)+i\sin\left(\frac{\theta+2k\pi}{n}\right)\right] \end{align*}

Therefore, distinct values of z1/nz^{1/n} are obtained for:

k=0,1,2,3,,n1k=0,1,2,3,\ldots,n-1

Example 4: Find out the cube roots of unity.

Given,

z=1=1(cos0+isin0)=cos2kπ+isin2kπ,kZ[sinθ=sin(2kπ+θ)]\begin{align*} z&=1\\ &=1(\cos0+i\sin0)\\ &=\cos{2k\pi}+i\sin{2k\pi},k\in\Z&&[\because \sin\theta=\sin({2k\pi+\theta})] \end{align*}

Finding out the cube root:

z1/3=(cos2kπ+isin2kπ)1/3,k=0,1,2=cos2kπ3+isin2kπ3,k=0,1,2\begin{align*} \therefore z^{1/3}&=(\cos{2k\pi}+i\sin{2k\pi})^{1/3},&&k=0,1,2\\ &=\cos{\frac{2k\pi}{3}}+i\sin{\frac{2k\pi}{3}},&&k=0,1,2 \end{align*}

Substituting the value of z=1z=1, and k=0,1,2k=0,1,2, we have:

11/3=cos0+isin0,cos2π3+isin2π3,cos4π3+isin4π3=1,12+i32,12i32=1,1±i32\begin{align*} 1^{1/3}&=\cos0+i\sin0,\cos{\frac{2\pi}{3}}+i\sin{\frac{2\pi}{3}},\cos{\frac{4\pi}{3}}+i\sin{\frac{4\pi}{3}}\\ &=1,-\frac{1}{2}+i\frac{\sqrt{3}}{2},-\frac{1}{2}-i\frac{\sqrt{3}}{2}\\ &=1,\frac{-1\pm i\sqrt{3}}{2} \end{align*}

Expansions of Cosine and Sine

cosnθ+isinnθ=(cosθ+isinθ)n=cosnθ+nC1.cosn1θ.(isinθ)+nC2.cosn2θ.(isinθ)2+nC3.cosn3θ.(isinθ)3+=cosnθ+i.nC1cosn1sinθnC2cosn2θ.sin2θi.nC3cosn3θ.sin3θ+nC4cosn4θ.sin4θ+=(cosnθnC2cosn2θsin2θ+nC4cosn4θ.sin4θ)+i(nC1cosn1θ.sinθnC3cosn3θ.sin3θ+)\begin{align*} \cos{n\theta}+i\sin{n\theta}&=(\cos\theta+i\sin\theta)^n\\ &=\cos^n\theta+{}^nC_1.\cos^{n-1}\theta.(i\sin\theta)+{}^nC_2.\cos^{n-2}\theta.(i\sin\theta)^2+{}^nC_3.\cos^{n-3}\theta.(i\sin\theta)^3+\ldots\\ &=\cos^n\theta+i.{}^nC_1\cos^{n-1}\sin\theta-{}^nC_2\cos^{n-2}\theta.\sin^2\theta-i.{}^nC_3\cos^{n-3}\theta.\sin^3\theta+{}^nC_4\cos^{n-4}\theta.\sin^4\theta+\ldots\\ &=(cos^n\theta-{}^nC_2\cos^{n-2}\theta\sin^2\theta+{}^nC_4\cos^{n-4}\theta.sin^4\theta-\ldots)+i({}^nC_1\cos^{n-1}\theta.sin\theta-{}^nC_3\cos^{n-3}\theta.\sin^3\theta+\ldots) \end{align*}

From the above, we get:

cosnθ=cosnθnC2cosn2θsin2θ+nC4cosn4θ.sin4θsinnθ=nC1cosn1θ.sinθnC3cosn3θ.sin3θ+nC5cosn5θ.sin5θ\begin{align} \cos{n\theta}=cos^n\theta-{}^nC_2\cos^{n-2}\theta\sin^2\theta+{}^nC_4\cos^{n-4}\theta.sin^4\theta-\ldots\\ \sin{n\theta}={}^nC_1\cos^{n-1}\theta.sin\theta-{}^nC_3\cos^{n-3}\theta.\sin^3\theta+{}^nC_5\cos^{n-5}\theta.\sin^5\theta-\ldots \end{align}

Expansion of Trigonometric Expressions in Power Series

Trigonometric expressions such as sinα\sin\alpha, cosα\cos\alpha can be expanded in the power series of α\alpha. Considering cosnθ\cos{n\theta}:

cosnθ=cosnθnC2cosn2θsin2θ+nC4cosn4θ.sin4θ=cosnθn(n1)2!cosn2θ.sin2θ+n(n1)(n2)(n3)4!cosn4θ.sin4θ\begin{align*} \cos{n\theta}&=cos^n\theta-{}^nC_2\cos^{n-2}\theta\sin^2\theta+{}^nC_4\cos^{n-4}\theta.sin^4\theta-\ldots\\ &=\cos^n\theta-\frac{n(n-1)}{2!}\cos^{n-2}\theta.sin^2\theta+\frac{n(n-1)(n-2)(n-3)}{4!}\cos^{n-4}\theta.\sin^4\theta-\ldots \end{align*}

Now, nθ=αn=αθn\theta=\alpha\Rightarrow n=\frac{\alpha}{\theta}

cosα=cosnθαθ(αθ1)2!cosn2θ(sinθθ)2+αθ(αθ1)(αθ2)(αθ3)4!cosn4θ(sinθθ)4\begin{align*} \therefore \cos\alpha=\cos^n\theta&-\frac{\frac{\alpha}{\theta}\left(\frac{\alpha}{\theta}-1\right)}{2!}\cos^{n-2}\theta\left(\frac{\sin\theta}{\theta}\right)^2\\ &+\frac{\frac{\alpha}{\theta}\left(\frac{\alpha}{\theta}-1\right)\left(\frac{\alpha}{\theta}-2\right)\left(\frac{\alpha}{\theta}-3\right)}{4!}\cos^{n-4}\theta\left(\frac{\sin\theta}{\theta}\right)^4-\ldots \end{align*}

Now, n,θ0n\to\infty, \theta\to0, such that α\alpha is constant, we get:

cosα=1α22!+α44!sinα=αα33!+α55!\begin{align} \cos\alpha=1-\frac{\alpha^2}{2!}+\frac{\alpha^4}{4!}-\ldots\\ \sin\alpha=\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots \end{align}

We get:

tanα=sinαcosα=αα33!+α55!1α22!+α44!=(αα33!+α55!){1(α22!α44!+)}1=(αα33!+α55!){1(α22!α44!+)+(α22!α44!+)2+}=α+13α3+215α5++\begin{align*} \tan\alpha&=\frac{\sin\alpha}{\cos\alpha}=\frac{\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots}{1-\frac{\alpha^2}{2!}+\frac{\alpha^4}{4!}-\ldots}\\ &=\left(\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots\right)\left\{1-\left(\frac{\alpha^2}{2!}-\frac{\alpha^4}{4!}+\ldots\right)\right\}^{-1}\\ &=\left(\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots\right)\left\{1-\left(\frac{\alpha^2}{2!}-\frac{\alpha^4}{4!}+\ldots\right)+\left(\frac{\alpha^2}{2!}-\frac{\alpha^4}{4!}+\ldots\right)^2+\ldots\right\}\\ &=\alpha+\frac{1}{3}\alpha^3+\frac{2}{15}\alpha^5+\ldots+\infin \end{align*}

Therefore, we get:

tanα=α+13α3+215α5++\begin{align} \tan\alpha=\alpha+\frac{1}{3}\alpha^3+\frac{2}{15}\alpha^5+\ldots+\infin \end{align}
Docs
AnanyaGB
About
© MIT - 2024