It follows from the properties of real numbers that, the square of a real number is never negative . Consequently, the elementary quadratic equation x 2 + 1 = 0 x^2+1=0 x 2 + 1 = 0 , has no solution in the system of real numbers. Introduction of a new type of numbers, called complex numbers , has made it possible to provide solutions to the equation x 2 + 1 = 0 x^2+1=0 x 2 + 1 = 0 , and also of the more general type of equations:
a 0 x n + a 1 x n − 1 + … + a n = 0 a_0x^n+a_1x^{n-1}+\ldots+a_n=0 a 0 x n + a 1 x n − 1 + … + a n = 0
Complex Numbers
Any complex number z z z is an ordered pair of real numbers ( a , b ) (a,b) ( a , b ) , that satisfies the following condition (1), and the following laws of operations (2), and (3):
( a , b ) = ( c , d ) (a,b)=(c,d) ( a , b ) = ( c , d ) , if and only if a = c a=c a = c , b = d b=d b = d . This is known as the condition of equality .
( a , b ) + ( c , d ) = ( a + c , b + d ) (a,b)+(c,d)=(a+c,b+d) ( a , b ) + ( c , d ) = ( a + c , b + d ) . This is known as the definition of addition .
( a , b ) . ( c , d ) = ( a c − b d , a d + b c ) (a,b).(c,d)=(ac-bd,ad+bc) ( a , b ) . ( c , d ) = ( a c − b d , a d + b c ) . This is known as the definition of multiplication .
Theorems for complex numbers
1. Addition of two complex numbers is commutative
Considering two complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , and z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) . Then, as per the theorem, z 1 + z 2 = z 2 + z 1 z_1+z_2=z_2+z_1 z 1 + z 2 = z 2 + z 1 .
z 1 + z 2 = ( a 1 , b 1 ) + ( a 2 , b 2 ) = ( a 1 + a 2 , b 1 + b 2 ) \begin{align*}
z_1+z_2&=(a_1,b_1)+(a_2,b_2)\\
&=(a_1+a_2,b_1+b_2)
\end{align*} z 1 + z 2 = ( a 1 , b 1 ) + ( a 2 , b 2 ) = ( a 1 + a 2 , b 1 + b 2 )
But, a 1 + a 2 = a 2 + a 1 a_1+a_2=a_2+a_1 a 1 + a 2 = a 2 + a 1 , and, b 1 + b 2 = b 2 + b 1 b_1+b_2=b_2+b_1 b 1 + b 2 = b 2 + b 1 , since addition of real numbers is commutative.
∴ z 1 + z 2 = ( a 1 + a 2 , b 1 + b 2 ) = ( a 2 + a 1 , b 2 + b 1 ) = ( a 2 , b 2 ) + ( a 1 , b 1 ) = z 2 + z 1 \begin{align*}
\therefore z_1+z_2&=(a_1+a_2,b_1+b_2)\\
&=(a_2+a_1,b_2+b_1)\\
&=(a_2,b_2)+(a_1,b_1)=z_2+z_1
\end{align*} ∴ z 1 + z 2 = ( a 1 + a 2 , b 1 + b 2 ) = ( a 2 + a 1 , b 2 + b 1 ) = ( a 2 , b 2 ) + ( a 1 , b 1 ) = z 2 + z 1
Therefore, the addition of two complex numbers is commutative:
z 1 + z 2 = z 2 + z 1 z_1+z_2=z_2+z_1 z 1 + z 2 = z 2 + z 1
2. Addition of complex numbers is associative.
Considering three complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) , and z 3 = ( a 3 , b 3 ) z_3=(a_3,b_3) z 3 = ( a 3 , b 3 ) . Then, as per the theorem, z 1 + ( z 2 + z 3 ) = ( z 1 + z 2 ) + z 3 z_1+(z_2+z_3)=(z_1+z_2)+z_3 z 1 + ( z 2 + z 3 ) = ( z 1 + z 2 ) + z 3 .
z 1 + ( z 2 + z 3 ) = ( a 1 , b 1 ) + { ( a 2 , b 2 ) + ( a 3 , b 3 ) } = ( a 1 , b 1 ) + ( a 2 + a 3 , b 2 + b 3 ) = ( a 1 + ( a 2 + a 3 ) , b 1 + ( b 2 + b 3 ) ) \begin{align*}
z_1+(z_2+z_3)&=(a_1,b_1)+\{(a_2,b_2)+(a_3,b_3)\}\\
&=(a_1,b_1)+(a_2+a_3,b_2+b_3)\\
&=(a_1+(a_2+a_3),b_1+(b_2+b_3))
\end{align*} z 1 + ( z 2 + z 3 ) = ( a 1 , b 1 ) + {( a 2 , b 2 ) + ( a 3 , b 3 )} = ( a 1 , b 1 ) + ( a 2 + a 3 , b 2 + b 3 ) = ( a 1 + ( a 2 + a 3 ) , b 1 + ( b 2 + b 3 ))
But, a 1 + ( a 2 + a 3 ) = ( a 1 + a 2 ) + a 3 a_1+(a_2+a_3)=(a_1+a_2)+a_3 a 1 + ( a 2 + a 3 ) = ( a 1 + a 2 ) + a 3 , and b 1 + ( b 2 + b 3 ) = ( b 1 + b 2 ) + b 3 b_1+(b_2+b_3)=(b_1+b_2)+b_3 b 1 + ( b 2 + b 3 ) = ( b 1 + b 2 ) + b 3 , since addition of real numbers is associative.
∴ z 1 + ( z 2 + z 3 ) = ( a 1 + ( a 2 + a 3 ) , b 1 + ( b 2 + b 3 ) ) = ( ( a 1 + a 2 ) + a 3 , ( b 1 + b 2 ) + b 3 ) = ( a 1 + a 2 , b 1 + b 2 ) + ( a 3 , b 3 ) = { ( a 1 , b 1 ) + ( a 2 , b 2 ) } + ( a 3 , b 3 ) = ( z 1 + z 2 ) + z 3 \begin{align*}
\therefore z_1+(z_2+z_3)&=(a_1+(a_2+a_3),b_1+(b_2+b_3))\\
&=((a_1+a_2)+a_3,(b_1+b_2)+b_3)\\
&=(a_1+a_2,b_1+b_2)+(a_3,b_3)\\
&=\{(a_1,b_1)+(a_2,b_2)\}+(a_3,b_3)\\
&=(z_1+z_2)+z_3
\end{align*} ∴ z 1 + ( z 2 + z 3 ) = ( a 1 + ( a 2 + a 3 ) , b 1 + ( b 2 + b 3 )) = (( a 1 + a 2 ) + a 3 , ( b 1 + b 2 ) + b 3 ) = ( a 1 + a 2 , b 1 + b 2 ) + ( a 3 , b 3 ) = {( a 1 , b 1 ) + ( a 2 , b 2 )} + ( a 3 , b 3 ) = ( z 1 + z 2 ) + z 3
Therefore, the addition of complex numbers is associative:
z 1 + ( z 2 + z 3 ) = ( z 1 + z 2 ) + z 3 z_1+(z_2+z_3)=(z_1+z_2)+z_3 z 1 + ( z 2 + z 3 ) = ( z 1 + z 2 ) + z 3
3. Multiplication of two complex numbers is commutative
Considering two complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , and z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) . Then, as per the theorem, z 1 . z 2 = z 2 . z 1 z_1.z_2=z_2.z_1 z 1 . z 2 = z 2 . z 1 .
z 1 . z 2 = ( a 1 , b 1 ) . ( a 2 , b 2 ) = ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) \begin{align*}
z_1.z_2&=(a_1,b_1).(a_2,b_2)\\
&=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)
\end{align*} z 1 . z 2 = ( a 1 , b 1 ) . ( a 2 , b 2 ) = ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 )
But, a 1 a 2 = a 2 a 1 a_1a_2=a_2a_1 a 1 a 2 = a 2 a 1 , b 1 b 2 = b 2 b 1 b_1b_2=b_2b_1 b 1 b 2 = b 2 b 1 , a 1 b 2 = b 2 a 1 a_1b_2=b_2a_1 a 1 b 2 = b 2 a 1 , and b 1 a 2 = a 2 b 1 b_1a_2=a_2b_1 b 1 a 2 = a 2 b 1 , since the multiplication of real numbers is commutative.
∴ z 1 . z 2 = ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) = ( a 2 a 1 − b 2 b 1 , b 2 a 1 + a 2 b 1 ) \begin{align*}
\therefore z_1.z_2&=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)\\
&=(a_2a_1-b_2b_1,b_2a_1+a_2b_1)
\end{align*} ∴ z 1 . z 2 = ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) = ( a 2 a 1 − b 2 b 1 , b 2 a 1 + a 2 b 1 )
But, b 2 a 1 + a 2 b 1 = a 2 b 1 + b 2 a 1 b_2a_1+a_2b_1=a_2b_1+b_2a_1 b 2 a 1 + a 2 b 1 = a 2 b 1 + b 2 a 1 , since addition of real numbers is commutative.
∴ z 1 . z 2 = ( a 2 a 1 − b 2 b 1 , b 2 a 1 + a 2 b 1 ) = ( a 2 a 1 − b 2 b 1 , a 2 b 1 + b 2 a 1 ) = ( a 2 , b 2 ) . ( a 1 , b 1 ) = z 2 . z 1 \begin{align*}
\therefore z_1.z_2&=(a_2a_1-b_2b_1,b_2a_1+a_2b_1)\\
&=(a_2a_1-b_2b_1,a_2b_1+b_2a_1)\\
&=(a_2,b_2).(a_1,b_1)=z_2.z_1
\end{align*} ∴ z 1 . z 2 = ( a 2 a 1 − b 2 b 1 , b 2 a 1 + a 2 b 1 ) = ( a 2 a 1 − b 2 b 1 , a 2 b 1 + b 2 a 1 ) = ( a 2 , b 2 ) . ( a 1 , b 1 ) = z 2 . z 1
Therefore, the multiplication of two complex numbers is commutative.
z 1 . z 2 = z 2 . z 1 z_1.z_2=z_2.z_1 z 1 . z 2 = z 2 . z 1
4. Multiplication of complex numbers is associative
Considering three complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) , and z 3 = ( a 3 , b 3 ) z_3=(a_3,b_3) z 3 = ( a 3 , b 3 ) . Then, as per the theorem, z 1 . ( z 2 . z 3 ) = ( z 1 . z 2 ) . z 3 z_1.(z_2.z_3)=(z_1.z_2).z_3 z 1 . ( z 2 . z 3 ) = ( z 1 . z 2 ) . z 3 .
z 1 . ( z 2 . z 3 ) = ( a 1 , b 1 ) . { ( a 2 , b 2 ) . ( a 3 , b 3 ) } = ( a 1 , b 1 ) ( a 2 a 3 − b 2 b 3 , a 2 b 3 + b 2 a 3 ) = ( a 1 ( a 2 a 3 − b 2 b 3 ) − b 1 ( a 2 b 3 + b 2 a 3 ) , a 1 ( a 2 b 3 + b 2 a 3 ) + b 1 ( a 2 a 3 − b 2 b 3 ) ) = ( a 1 a 2 a 3 − a 1 b 2 b 3 − b 1 a 2 b 3 − b 1 b 2 a 3 , a 1 a 2 b 3 + a 1 b 2 a 3 + b 1 a 2 a 3 − b 1 b 2 b 3 ) = ( ( a 1 a 2 − b 1 b 2 ) a 3 − ( a 1 b 2 + b 1 a 2 ) b 3 , ( a 1 a 2 − b 1 b 2 ) b 3 + ( a 1 b 2 + b 1 a 2 ) a 3 ) = ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) . ( a 3 , b 3 ) = { ( a 1 , b 1 ) . ( a 2 , b 2 ) } . ( a 3 , b 3 ) = ( z 1 . z 2 ) . z 3 \begin{align*}
z_1.(z_2.z_3)&=(a_1,b_1).\{(a_2,b_2).(a_3,b_3)\}\\
&=(a_1,b_1)(a_2a_3-b_2b_3,a_2b_3+b_2a_3)\\
&=(a_1(a_2a_3-b_2b_3)-b_1(a_2b_3+b_2a_3),a_1(a_2b_3+b_2a_3)+b_1(a_2a_3-b_2b_3))\\
&=(a_1a_2a_3-a_1b_2b_3-b_1a_2b_3-b_1b_2a_3,a_1a_2b_3+a_1b_2a_3+b_1a_2a_3-b_1b_2b_3)\\
&=((a_1a_2-b_1b_2)a_3-(a_1b_2+b_1a_2)b_3,(a_1a_2-b_1b_2)b_3+(a_1b_2+b_1a_2)a_3)\\
&=(a_1a_2-b_1b_2,a_1b_2+b_1a_2).(a_3,b_3)=\{(a_1,b_1).(a_2,b_2)\}.(a_3,b_3)\\
&=(z_1.z_2).z_3
\end{align*} z 1 . ( z 2 . z 3 ) = ( a 1 , b 1 ) . {( a 2 , b 2 ) . ( a 3 , b 3 )} = ( a 1 , b 1 ) ( a 2 a 3 − b 2 b 3 , a 2 b 3 + b 2 a 3 ) = ( a 1 ( a 2 a 3 − b 2 b 3 ) − b 1 ( a 2 b 3 + b 2 a 3 ) , a 1 ( a 2 b 3 + b 2 a 3 ) + b 1 ( a 2 a 3 − b 2 b 3 )) = ( a 1 a 2 a 3 − a 1 b 2 b 3 − b 1 a 2 b 3 − b 1 b 2 a 3 , a 1 a 2 b 3 + a 1 b 2 a 3 + b 1 a 2 a 3 − b 1 b 2 b 3 ) = (( a 1 a 2 − b 1 b 2 ) a 3 − ( a 1 b 2 + b 1 a 2 ) b 3 , ( a 1 a 2 − b 1 b 2 ) b 3 + ( a 1 b 2 + b 1 a 2 ) a 3 ) = ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) . ( a 3 , b 3 ) = {( a 1 , b 1 ) . ( a 2 , b 2 )} . ( a 3 , b 3 ) = ( z 1 . z 2 ) . z 3
Therefore, multiplication of complex numbers is associative.
z 1 . ( z 2 . z 3 ) = ( z 1 . z 2 ) . z 3 z_1.(z_2.z_3)=(z_1.z_2).z_3 z 1 . ( z 2 . z 3 ) = ( z 1 . z 2 ) . z 3
Unit complex number
Complex numbers just like real numbers, when multipled with one, give the complex number itself. For example, considering a complex number, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , as per the above statement, z 1 . 1 = z 1 z_1.1=z_1 z 1 .1 = z 1 .
z 1 . 1 = ( a 1 , b 1 ) . ( 1 , 0 ) = ( a 1 . 1 − b 1 . 0 , a 1 . 0 + b 1 . 1 ) = ( a 1 , b 1 ) = z 1 \begin{align*}
z_1.1&=(a_1,b_1).(1,0)\\
&=(a_1.1-b_1.0,a_1.0+b_1.1)\\
&=(a_1,b_1)=z_1
\end{align*} z 1 .1 = ( a 1 , b 1 ) . ( 1 , 0 ) = ( a 1 .1 − b 1 .0 , a 1 .0 + b 1 .1 ) = ( a 1 , b 1 ) = z 1
∴ ( a , b ) . ( 1 , 0 ) = ( a , b ) \therefore (a,b).(1,0)=(a,b) ∴ ( a , b ) . ( 1 , 0 ) = ( a , b )
Here, ( 1 , 0 ) (1,0) ( 1 , 0 ) , is said to be unit complex number , denoted by 1 1 1 .
Negative of a complex number
Negative of a complex number z 1 z_1 z 1 , is denoted by − z 1 -z_1 − z 1 , is a complex number z 2 z_2 z 2 , such that, z 1 + z 2 = 0 z_1+z_2=0 z 1 + z 2 = 0 .
Considering z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , and z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) ,
z 1 + z 2 = 0 ⇒ ( a 1 , b 1 ) + ( a 2 , b 2 ) = ( 0 , 0 ) ⇒ ( a 1 + a 2 , b 1 + b 2 ) = ( 0 , 0 ) \begin{align*}
z_1+z_2=0\Rightarrow (a_1,b_1)+(a_2,b_2)=(0,0)\\
\Rightarrow (a_1+a_2,b_1+b_2)=(0,0)
\end{align*} z 1 + z 2 = 0 ⇒ ( a 1 , b 1 ) + ( a 2 , b 2 ) = ( 0 , 0 ) ⇒ ( a 1 + a 2 , b 1 + b 2 ) = ( 0 , 0 )
From the above equation, we have, a 1 + a 2 = 0 ⇒ a 2 = − a 1 a_1+a_2=0\Rightarrow a_2=-a_1 a 1 + a 2 = 0 ⇒ a 2 = − a 1 , and b 1 + b 2 = 0 ⇒ b 2 = − b 1 b_1+b_2=0\Rightarrow b_2=-b_1 b 1 + b 2 = 0 ⇒ b 2 = − b 1
∴ − z 1 = z 2 = ( a 2 , b 2 ) = ( − a 1 , − b 1 ) = − ( a 1 , b 1 ) \therefore -z_1=z_2=(a_2,b_2)=(-a_1,-b_1)=-(a_1,b_1) ∴ − z 1 = z 2 = ( a 2 , b 2 ) = ( − a 1 , − b 1 ) = − ( a 1 , b 1 )
Thus, the negative of a complex number z 1 = ( a , b ) z_1=(a,b) z 1 = ( a , b ) , is − z 1 = − ( a , b ) -z_1=-(a,b) − z 1 = − ( a , b ) .
Subtraction of a complex number
Let two complex numbers be, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , and z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) . Their subtraction z 1 − z 2 z_1-z_2 z 1 − z 2 , is:
z 1 − z 2 = z 1 + ( − z 2 ) = ( a 1 , b 1 ) + ( − a 2 , − b 2 ) = ( a 1 − a 2 , b 1 − b 2 ) \begin{align*}
z_1-z_2&=z_1+(-z_2)\\
&=(a_1,b_1)+(-a_2,-b_2)\\
&=(a_1-a_2,b_1-b_2)
\end{align*} z 1 − z 2 = z 1 + ( − z 2 ) = ( a 1 , b 1 ) + ( − a 2 , − b 2 ) = ( a 1 − a 2 , b 1 − b 2 )
Therefore, z 1 − z 2 = ( a 1 − a 2 , b 1 − b 2 ) z_1-z_2=(a_1-a_2,b_1-b_2) z 1 − z 2 = ( a 1 − a 2 , b 1 − b 2 ) .
Multiplicative inverse of a complex number
Multiplicative inverse , of any non-zero complex number z 1 z_1 z 1 , which is denoted as z 1 − 1 z_1^{-1} z 1 − 1 , is a complex number z 2 z_2 z 2 , so that, z 1 . z 2 = 1 z_1.z_2=1 z 1 . z 2 = 1
Considering two complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , and z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) .
z 1 . z 2 = 1 ⇒ ( a 1 , b 1 ) . ( a 2 , b 2 ) = ( 1 , 0 ) ⇒ ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) = ( 1 , 0 ) \begin{align*}
z_1.z_2=1&\Rightarrow (a_1,b_1).(a_2,b_2)=(1,0)\\
&\Rightarrow (a_1a_2-b_1b_2,a_1b_2+b_1a_2)=(1,0)
\end{align*} z 1 . z 2 = 1 ⇒ ( a 1 , b 1 ) . ( a 2 , b 2 ) = ( 1 , 0 ) ⇒ ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) = ( 1 , 0 )
From above, we have two equations,
a 1 a 2 − b 1 b 2 = 1 ⇒ b 2 = a 1 a 2 − 1 b 1 \begin{equation}
a_1a_2-b_1b_2=1\Rightarrow b_2=\frac{a_1a_2-1}{b_1}
\end{equation} a 1 a 2 − b 1 b 2 = 1 ⇒ b 2 = b 1 a 1 a 2 − 1
a 1 b 2 + b 1 a 2 = 0 ⇒ b 2 = − b 1 a 2 a 1 \begin{equation}
a_1b_2+b_1a_2=0\Rightarrow b_2=-\frac{b_1a_2}{a_1}
\end{equation} a 1 b 2 + b 1 a 2 = 0 ⇒ b 2 = − a 1 b 1 a 2
Comparing the two equations, we get,
a 1 a 2 − 1 b 1 = − b 1 a 2 a 1 ⇒ a 1 2 a 2 − a 1 = − b 1 2 a 2 ⇒ ( a 1 2 + b 1 2 ) a 2 = a 1 ⇒ a 2 = a 1 a 1 2 + b 1 2 \begin{align*}
\frac{a_1a_2-1}{b_1}=-\frac{b_1a_2}{a_1}&\Rightarrow a_1^2a_2-a_1=-b_1^2a_2\\
&\Rightarrow (a_1^2+b_1^2)a_2=a_1\\
&\Rightarrow a_2=\frac{a_1}{a_1^2+b_1^2}
\end{align*} b 1 a 1 a 2 − 1 = − a 1 b 1 a 2 ⇒ a 1 2 a 2 − a 1 = − b 1 2 a 2 ⇒ ( a 1 2 + b 1 2 ) a 2 = a 1 ⇒ a 2 = a 1 2 + b 1 2 a 1
Putting the value of a 2 a_2 a 2 in ( 2 ) (2) ( 2 ) , we get:
b 2 = − b 1 a 1 a 1 a 1 2 + b 1 2 = − b 1 a 1 2 + b 1 2 b_2=-\frac{b_1}{a_1}\frac{a_1}{a_1^2+b_1^2}=\frac{-b_1}{a_1^2+b_1^2} b 2 = − a 1 b 1 a 1 2 + b 1 2 a 1 = a 1 2 + b 1 2 − b 1
Now,
∵ z 1 − 1 = z 2 = ( a 1 a 1 2 + b 1 2 , − b 1 a 1 2 + b 1 2 ) \because z_1^{-1}=z_2=\left(\frac{a_1}{a_1^2+b_1^2},\frac{-b_1}{a_1^2+b_1^2}\right)\\ ∵ z 1 − 1 = z 2 = ( a 1 2 + b 1 2 a 1 , a 1 2 + b 1 2 − b 1 )
∴ z 1 − 1 = ( a 1 a 1 2 + b 1 2 , − b 1 a 1 2 + b 1 2 ) \begin{equation}
\therefore z_1^{-1}=\left(\frac{a_1}{a_1^2+b_1^2},\frac{-b_1}{a_1^2+b_1^2}\right)
\end{equation} ∴ z 1 − 1 = ( a 1 2 + b 1 2 a 1 , a 1 2 + b 1 2 − b 1 )
Division of a complex number
Considering two complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , and z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) , where z 2 z_2 z 2 is a non-zero complex number.
∴ z 1 z 2 = z 1 . z 2 − 1 = ( a 1 , b 1 ) . ( a 2 , b 2 ) − 1 = ( a 1 , b 1 ) . ( a 2 a 2 2 + b 2 2 , − b 2 a 2 2 + b 2 2 ) = ( a 1 a 2 a 2 2 + b 2 2 − b 1 b 2 a 2 2 + b 2 2 , − a 1 b 2 a 2 2 + b 2 2 + b 1 a 2 a 2 2 + b 2 2 ) = ( a 1 a 2 − b 1 b 2 a 2 2 + b 2 2 , − a 1 b 2 + b 1 a 2 a 2 2 + b 2 2 ) \begin{align*}
\therefore \frac{z_1}{z_2}&=z_1.z_2^{-1}=(a_1,b_1).(a_2,b_2)^{-1}\\
&=(a_1,b_1).\left(\frac{a_2}{a_2^2+b_2^2},\frac{-b_2}{a_2^2+b_2^2}\right)\\
&=\left(\frac{a_1a_2}{a_2^2+b_2^2}-\frac{b_1b_2}{a_2^2+b_2^2},\frac{-a_1b_2}{a_2^2+b_2^2}+\frac{b_1a_2}{a_2^2+b_2^2}\right)\\
&=\left(\frac{a_1a_2-b_1b_2}{a_2^2+b_2^2},\frac{-a_1b_2+b_1a_2}{a_2^2+b_2^2}\right)
\end{align*} ∴ z 2 z 1 = z 1 . z 2 − 1 = ( a 1 , b 1 ) . ( a 2 , b 2 ) − 1 = ( a 1 , b 1 ) . ( a 2 2 + b 2 2 a 2 , a 2 2 + b 2 2 − b 2 ) = ( a 2 2 + b 2 2 a 1 a 2 − a 2 2 + b 2 2 b 1 b 2 , a 2 2 + b 2 2 − a 1 b 2 + a 2 2 + b 2 2 b 1 a 2 ) = ( a 2 2 + b 2 2 a 1 a 2 − b 1 b 2 , a 2 2 + b 2 2 − a 1 b 2 + b 1 a 2 )
∴ z 1 z 2 = ( a 1 a 2 − b 1 b 2 a 2 2 + b 2 2 , − a 1 b 2 + b 1 a 2 a 2 2 + b 2 2 ) \therefore \frac{z_1}{z_2}=\left(\frac{a_1a_2-b_1b_2}{a_2^2+b_2^2},\frac{-a_1b_2+b_1a_2}{a_2^2+b_2^2}\right) ∴ z 2 z 1 = ( a 2 2 + b 2 2 a 1 a 2 − b 1 b 2 , a 2 2 + b 2 2 − a 1 b 2 + b 1 a 2 )
If the product of two complex numbers is zero, then atleast one of them is zero.
Considering two complex numbers, z 1 = ( a 1 , b 1 ) z_1=(a_1,b_1) z 1 = ( a 1 , b 1 ) , z 2 = ( a 2 , b 2 ) z_2=(a_2,b_2) z 2 = ( a 2 , b 2 ) , such that z 1 . z 2 = 0 z_1.z_2=0 z 1 . z 2 = 0 .
z 1 . z 2 = 0 ⇒ ( a 1 , b 1 ) . ( a 2 , b 2 ) = ( 0 , 0 ) ⇒ ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) = ( 0 , 0 ) \begin{align*}
z_1.z_2=0&\Rightarrow(a_1,b_1).(a_2,b_2)=(0,0)\\
&\Rightarrow (a_1a_2-b_1b_2,a_1b_2+b_1a_2)=(0,0)\\
\end{align*} z 1 . z 2 = 0 ⇒ ( a 1 , b 1 ) . ( a 2 , b 2 ) = ( 0 , 0 ) ⇒ ( a 1 a 2 − b 1 b 2 , a 1 b 2 + b 1 a 2 ) = ( 0 , 0 )
We have two equations:
a 1 a 2 − b 1 b 2 = 0 \begin{equation}
a_1a_2-b_1b_2=0
\end{equation} a 1 a 2 − b 1 b 2 = 0
a 1 b 2 + b 1 a 2 = 0 \begin{equation}
a_1b_2+b_1a_2=0
\end{equation} a 1 b 2 + b 1 a 2 = 0
Let, z 2 ≠ 0 z_2\ne0 z 2 = 0 , then, a 2 2 + b 2 2 ≠ 0 a_2^2+b_2^2\ne0 a 2 2 + b 2 2 = 0
Multiplying ( 4 ) (4) ( 4 ) by a 2 a_2 a 2 , and ( 5 ) (5) ( 5 ) by b 2 b_2 b 2 , and adding:
⇒ a 2 ( a 1 a 2 − b 1 b 2 ) + b 2 ( a 1 b 2 + b 1 a 2 ) = 0 ⇒ a 1 a 2 2 − b 1 b 2 a 1 + a 1 b 2 2 + b 1 a 2 b 2 = 0 ⇒ a 1 ( a 2 2 + b 2 2 ) = 0 \begin{align*}
&\Rightarrow a_2(a_1a_2-b_1b_2)+b_2(a_1b_2+b_1a_2)=0\\
&\Rightarrow a_1a_2^2-b_1b_2a_1+a_1b_2^2+b_1a_2b_2=0\\
&\Rightarrow a_1(a_2^2+b_2^2)=0
\end{align*} ⇒ a 2 ( a 1 a 2 − b 1 b 2 ) + b 2 ( a 1 b 2 + b 1 a 2 ) = 0 ⇒ a 1 a 2 2 − b 1 b 2 a 1 + a 1 b 2 2 + b 1 a 2 b 2 = 0 ⇒ a 1 ( a 2 2 + b 2 2 ) = 0
Similarly multiplying ( 4 ) (4) ( 4 ) by b 2 b_2 b 2 , and ( 5 ) (5) ( 5 ) by a 2 a_2 a 2 , and subtracting, we have:
b 1 ( a 2 2 + b 2 2 ) = 0 b_1(a_2^2+b_2^2)=0 b 1 ( a 2 2 + b 2 2 ) = 0
Therefore, from above, we have: a 1 = b 1 = 0 a_1=b_1=0 a 1 = b 1 = 0 . Thus, z 1 = 0 z_1=0 z 1 = 0 , for z 2 ≠ 0 z_2\ne0 z 2 = 0
Similarly, for z 1 ≠ 0 z_1\ne0 z 1 = 0 , we have z 2 = 0 z_2=0 z 2 = 0
A complex number, z = ( a , b ) z=(a,b) z = ( a , b ) , in the normal form, can be written as, z = a + b i z=a+bi z = a + bi .
Addition in normal form
Let z 1 = ( a , b ) z_1=(a,b) z 1 = ( a , b ) , and, z 2 = ( c , d ) z_2=(c,d) z 2 = ( c , d ) . In normal form they can be written as, z 1 = a + i b z_1=a+ib z 1 = a + ib , and z 2 = c + i d z_2=c+id z 2 = c + i d .
z 1 + z 2 = ( a + i b ) + ( c + i d ) = ( a + c ) + i ( b + d ) \begin{align*}
z_1+z_2&=(a+ib)+(c+id)\\
&=(a+c)+i(b+d)
\end{align*} z 1 + z 2 = ( a + ib ) + ( c + i d ) = ( a + c ) + i ( b + d )
Multiplication in normal form
Let z 1 = a + i b z_1=a+ib z 1 = a + ib , and z 2 = c + i d z_2=c+id z 2 = c + i d . Therefore their multiplication will be:
z 1 . z 2 = ( a + i b ) . ( c + i d ) = ( a c − b d ) + i ( a d + b c ) \begin{align*}
z_1.z_2&=(a+ib).(c+id)\\
&=(ac-bd)+i(ad+bc)
\end{align*} z 1 . z 2 = ( a + ib ) . ( c + i d ) = ( a c − b d ) + i ( a d + b c )
Multiplication can also be performed as real binomials, provided that i 2 = − 1 i^2=-1 i 2 = − 1 . For example, considering two complex numbers, z 1 = a + i b z_1=a+ib z 1 = a + ib , and z 2 = c + i d z_2=c+id z 2 = c + i d .
z 1 . z 2 = ( a + i b ) . ( c + i d ) = a c + i . a d + i . b c + i 2 . b d = a c − b d + i ( a d + b c ) \begin{align*}
z_1.z_2&=(a+ib).(c+id)\\
&=ac+i.ad+i.bc+i^2.bd\\
&=ac-bd+i(ad+bc)
\end{align*} z 1 . z 2 = ( a + ib ) . ( c + i d ) = a c + i . a d + i . b c + i 2 . b d = a c − b d + i ( a d + b c )
Example 1: Find out the product of two complex numbers 2 + 3 i 2+3i 2 + 3 i , and 3 + i 3+i 3 + i .
( 2 + 3 i ) . ( 3 + i ) = ( 2.3 − 3.1 ) + ( 2.1 + 3.3 ) i = 3 + 11 i \begin{align*}
(2+3i).(3+i)&=(2.3-3.1)+(2.1+3.3)i\\
&=3+11i
\end{align*} ( 2 + 3 i ) . ( 3 + i ) = ( 2.3 − 3.1 ) + ( 2.1 + 3.3 ) i = 3 + 11 i
Example 2: Find out the result of division of two complex numbers 5 + 9 i 5+9i 5 + 9 i by 2 + 11 i 2+11i 2 + 11 i .
5 + 9 i 2 + 11 i = ( 5 + 9 i ) . ( 2 + 11 i ) − 1 = ( 5 + 9 i ) ( 2 4 + 121 + − 11 4 + 121 i ) = ( 10 + 99 125 + − 55 + 18 125 i ) = ( 109 125 − 37 125 i ) = 109 − 37 i 125 \begin{align*}
\frac{5+9i}{2+11i}&=(5+9i).(2+11i)^{-1}\\
&=(5+9i)\left(\frac{2}{4+121}+\frac{-11}{4+121}i\right)\\
&=\left(\frac{10+99}{125}+\frac{-55+18}{125}i\right)\\
&=\left(\frac{109}{125}-\frac{37}{125}i\right)\\
&=\frac{109-37i}{125}
\end{align*} 2 + 11 i 5 + 9 i = ( 5 + 9 i ) . ( 2 + 11 i ) − 1 = ( 5 + 9 i ) ( 4 + 121 2 + 4 + 121 − 11 i ) = ( 125 10 + 99 + 125 − 55 + 18 i ) = ( 125 109 − 125 37 i ) = 125 109 − 37 i
Considering a complex number: z = a + i b z=a+ib z = a + ib . When represented in the complex plane, z z z is represented by the point whose Cartesian co-ordinates are ( a , b ) (a,b) ( a , b ) , referred to two perpendicular lines as axes, the first co-ordinate axis being called the real axis, and the second the imaginary axis.
Taking the origin as the pole and the real axis as the initial line, let ( r , θ ) (r,\theta) ( r , θ ) , as the polar coordinates of the point ( a , b ) (a,b) ( a , b ) . Then it can be concurred that, a = r cos θ a=r\cos{\theta} a = r cos θ , and, b = r sin θ b=r\sin\theta b = r sin θ . Geometrically, r r r is said to be the distance between the points ( a , b ) (a,b) ( a , b ) , from origin. And this r r r is the modulus of the complex number z z z .
We know: a = r cos θ a=r\cos\theta a = r cos θ , and b = r sin θ b=r\sin\theta b = r sin θ .
∴ r cos θ + r sin θ = a + b ⇒ r 2 cos 2 θ + r 2 sin 2 θ = a 2 + b 2 ⇒ r 2 ( cos 2 θ + sin 2 θ ) = a 2 + b 2 \begin{align*}
&\therefore r\cos\theta+r\sin\theta=a+b\\
&\Rightarrow r^2\cos^2\theta+r^2\sin^2\theta=a^2+b^2\\
&\Rightarrow r^2(\cos^2\theta+\sin^2\theta)=a^2+b^2
\end{align*} ∴ r cos θ + r sin θ = a + b ⇒ r 2 cos 2 θ + r 2 sin 2 θ = a 2 + b 2 ⇒ r 2 ( cos 2 θ + sin 2 θ ) = a 2 + b 2
We know: sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 sin 2 θ + cos 2 θ = 1
∴ r 2 ( cos 2 θ + sin 2 θ ) = a 2 + b 2 ⇒ r 2 = a 2 + b 2 ⇒ r = a 2 + b 2 \therefore r^2(\cos^2\theta+\sin^2\theta)=a^2+b^2\\
\Rightarrow r^2=a^2+b^2\Rightarrow r=\sqrt{a^2+b^2} ∴ r 2 ( cos 2 θ + sin 2 θ ) = a 2 + b 2 ⇒ r 2 = a 2 + b 2 ⇒ r = a 2 + b 2
Therefore, the modulus of a complex number z z z :
∣ z ∣ = r = a 2 + b 2 |z|=r=\sqrt{a^2+b^2} ∣ z ∣ = r = a 2 + b 2
The argument of a polar form represented as Arg z \textnormal{Arg}\ z Arg z , are all values of θ \theta θ , satisfying the relations cos θ = a r \cos\theta=\frac ar cos θ = r a , and sin θ = b r \sin\theta=\frac br sin θ = r b . Let's say, α \alpha α is a value of θ \theta θ , satisfying the above relation, then Arg z = α + 2 n π \textnormal{Arg}\ z=\alpha+2n\pi Arg z = α + 2 nπ , where n n n is an integer.
The principal argument of z z z , also called the amplitude of z z z , denoted by Arg z \textnormal{Arg}\ z Arg z , is defined to be the angle θ \theta θ which satisfies the ineqality − π < θ ≤ π -\pi\lt\theta\le\pi − π < θ ≤ π . For example, lets say, θ = 3 π 2 \theta=\frac{3\pi}{2} θ = 2 3 π , is an argument of z z z , but not the principle argument, because it doesnt lie within the given inequality: − π < θ ≤ π -\pi\lt\theta\le\pi − π < θ ≤ π .
Principle argument is also an argument. but within the argument set. Furthermore, the arguments cannot be termined from tan − 1 b a \tan^-1{\frac ba} tan − 1 a b .
Example 3: Given a complex number: z = − 1 + i z=-1+i z = − 1 + i , find the mod. z \textnormal{mod.}\ z mod. z , arg. z \textnormal{arg.}\ z arg. z , and express z z z in polar form.
Given, z = − 1 + i z=-1+i z = − 1 + i . Comparing it with z = r cos θ + r sin θ z=r\cos\theta+r\sin\theta z = r cos θ + r sin θ , we have:
r cos θ = − 1 r sin θ = 1 r\cos\theta=-1\\
r\sin\theta=1 r cos θ = − 1 r sin θ = 1
Modulus of z z z :
∣ z ∣ = r = a 2 + b 2 = − 1 2 + 1 2 = 2 |z|=r=\sqrt{a^2+b^2}=\sqrt{-1^2+1^2}=\sqrt2 ∣ z ∣ = r = a 2 + b 2 = − 1 2 + 1 2 = 2
Argument of z z z :
Arg. z = θ = cos − 1 ( − 1 2 ) = 3 π 4 \textnormal{Arg. }z=\theta=\cos^{-1}\left({\frac {-1}{\sqrt2}}\right)=\frac{3\pi}4 Arg. z = θ = cos − 1 ( 2 − 1 ) = 4 3 π
z z z in polar form:
z = 2 ( cos 3 π 4 + sin 3 π 4 i ) z=\sqrt2\left(\cos\frac{3\pi}{4}+\sin\frac{3\pi}4i\right) z = 2 ( cos 4 3 π + sin 4 3 π i )
Example 3: Given a complex number: z = − 1 − i z=-1-i z = − 1 − i , find the mod. z \textnormal{mod.}\ z mod. z , arg. z \textnormal{arg.}\ z arg. z , and express z z z in polar form.
Given, z = − 1 − i z=-1-i z = − 1 − i . Comparing it with z = r cos θ + r sin θ z=r\cos\theta+r\sin\theta z = r cos θ + r sin θ , we have:
r cos θ = − 1 r sin θ = − 1 r\cos\theta=-1\\
r\sin\theta=-1 r cos θ = − 1 r sin θ = − 1
Modulus of z z z :
∣ z ∣ = r = a 2 + b 2 = ( − 1 ) 2 + ( − 1 ) 2 = 2 |z|=r=\sqrt{a^2+b^2}=\sqrt{(-1)^2+(-1)^2}=\sqrt2 ∣ z ∣ = r = a 2 + b 2 = ( − 1 ) 2 + ( − 1 ) 2 = 2
Argument of z z z :
arg. z = cos − 1 ( − 1 r ) = cos − 1 ( − 1 2 ) = 3 π 4 , 5 π 4 … arg. z = sin − 1 ( − 1 r ) = sin − 1 ( − 1 2 ) = 5 π 4 … \textnormal{arg. }z=\cos^{-1}\left(-{1\over r}\right)=\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{3\pi}{4},\frac{5\pi}{4}\ldots\\
\textnormal{arg. }z=\sin^{-1}\left(-{1\over r}\right)=\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{5\pi}{4}\ldots arg. z = cos − 1 ( − r 1 ) = cos − 1 ( − 2 1 ) = 4 3 π , 4 5 π … arg. z = sin − 1 ( − r 1 ) = sin − 1 ( − 2 1 ) = 4 5 π …
∴ arg. z = 5 π 4 \therefore \textnormal{arg. }z=\frac{5\pi}{4} ∴ arg. z = 4 5 π
De Morgan's Theorem
If n n n be any integer then:
( cos θ + i sin θ ) n = cos n θ + i sin n θ \begin{align}
(\cos{\theta}+i\sin{\theta})^n=\cos{n\theta}+i\sin n\theta
\end{align} ( cos θ + i sin θ ) n = cos n θ + i sin n θ
If n n n be a fraction, then one of the values of ( cos θ + i sin θ ) n (\cos\theta+i\sin\theta)^n ( cos θ + i sin θ ) n is:
( cos θ + i sin θ ) n = ( cos n θ + i sin n θ ) \begin{align}
(\cos\theta+i\sin\theta)^n=(\cos n\theta+i\sin n\theta)
\end{align} ( cos θ + i sin θ ) n = ( cos n θ + i sin n θ )
Case 1: n ∈ N n\in\N n ∈ N
For, n = 1 n=1 n = 1 :
( cos θ + i sin θ ) 1 = cos θ + i sin θ = cos 1. θ + i sin 1. θ \begin{align*}
(\cos\theta+i\sin\theta)^1&=\cos\theta+i\sin\theta\\
&=\cos1.\theta+i\sin1.\theta
\end{align*} ( cos θ + i sin θ ) 1 = cos θ + i sin θ = cos 1. θ + i sin 1. θ
Let n = k n=k n = k ,
( c o s θ + i sin θ ) k = cos k θ + i sin k θ \begin{align*}
(cos\theta+i\sin\theta)^k=\cos k\theta+i\sin k\theta
\end{align*} ( cos θ + i sin θ ) k = cos k θ + i sin k θ
∴ ( cos θ + i sin θ ) k + 1 = ( cos k θ + i sin k θ ) ( cos k θ + i sin k θ ) = ( cos k θ cos θ − sin k θ sin θ ) + i ( sin k θ cos θ + cos k θ sin θ ) = cos ( k + 1 ) θ + i sin ( k + 1 ) θ \begin{align*}
\therefore (\cos\theta+i\sin\theta)^{k+1}&=(\cos k\theta+i\sin k\theta)(\cos k\theta+i\sin k\theta)\\
&=(\cos k\theta\cos\theta-\sin k\theta\sin\theta)+i(\sin k\theta\cos\theta+\cos k\theta\sin\theta)\\
&=\cos(k+1)\theta+i\sin(k+1)\theta
\end{align*} ∴ ( cos θ + i sin θ ) k + 1 = ( cos k θ + i sin k θ ) ( cos k θ + i sin k θ ) = ( cos k θ cos θ − sin k θ sin θ ) + i ( sin k θ cos θ + cos k θ sin θ ) = cos ( k + 1 ) θ + i sin ( k + 1 ) θ
∴ ( cos θ + i sin θ ) k + 1 = cos ( k + 1 ) θ + i sin ( k + 1 ) θ \begin{align}
\therefore (\cos\theta+i\sin\theta)^{k+1}=\cos(k+1)\theta+i\sin(k+1)\theta
\end{align} ∴ ( cos θ + i sin θ ) k + 1 = cos ( k + 1 ) θ + i sin ( k + 1 ) θ
Case 2: n = − m , n ∈ N n=-m, n\in\N n = − m , n ∈ N
( cos θ + i sin θ ) n = ( cos θ + i sin θ ) − m = 1 ( cos θ + i sin θ ) m = 1 cos m θ + i sin m θ = cos m θ − i sin m θ 1 [ Conjugate multiplication ] = cos ( − m ) θ + i sin ( − m ) θ = cos n θ + i sin n θ [ ∵ n = − m ] \begin{align*}
(\cos\theta+i\sin\theta)^n&=(\cos\theta+i\sin\theta)^{-m}\\
&=\frac{1}{(\cos\theta+i\sin\theta)^m}\\
&=\frac{1}{\cos m\theta+i\sin m\theta}\\
&=\frac{\cos m\theta-i\sin m\theta}{1}&&[\text{Conjugate multiplication}]\\
&=\cos(-m)\theta+i\sin(-m)\theta\\
&=\cos n\theta+i\sin n\theta&&[\because n=-m]
\end{align*} ( cos θ + i sin θ ) n = ( cos θ + i sin θ ) − m = ( cos θ + i sin θ ) m 1 = cos m θ + i sin m θ 1 = 1 cos m θ − i sin m θ = cos ( − m ) θ + i sin ( − m ) θ = cos n θ + i sin n θ [ Conjugate multiplication ] [ ∵ n = − m ]
Therefore, the theorem holds true for all negative numbers.
Case 3: n = p q , { p , q } ∈ Z , q > 0 n=\frac{p}{q}, \{p,q\}\in\Z, q>0 n = q p , { p , q } ∈ Z , q > 0
( cos p q θ + i sin p q θ ) q = cos p . θ + i sin p . θ = ( cos θ + i sin θ ) p \begin{align*}
\left(\cos\frac{p}{q}\theta+i\sin\frac{p}{q}\theta\right)^q&=\cos p.\theta+i\sin p.\theta\\
&=(\cos\theta+i\sin\theta)^p
\end{align*} ( cos q p θ + i sin q p θ ) q = cos p . θ + i sin p . θ = ( cos θ + i sin θ ) p
Therefore, one of the values of ( cos θ + i sin θ ) p / q (\cos\theta+i\sin\theta)^{p/q} ( cos θ + i sin θ ) p / q is:
( cos θ + i sin θ ) p q = ( cos p q θ + i sin p q θ ) \begin{align}
(\cos\theta+i\sin\theta)^{\frac{p}{q}}=\left(\cos\frac{p}{q}\theta+i\sin\frac{p}{q}\theta\right)
\end{align} ( cos θ + i sin θ ) q p = ( cos q p θ + i sin q p θ )
Therefore, one of the values of ( cos θ + i sin θ ) n (\cos\theta+i\sin\theta)^n ( cos θ + i sin θ ) n is ( cos n θ + i sin n θ ) (\cos n\theta+i\sin n\theta) ( cos n θ + i sin n θ ) .
n-th Root of a Complex Number
Considering a complex number: z = r ( cos θ + i sin θ ) z=r(\cos\theta+i\sin\theta) z = r ( cos θ + i sin θ ) , where z ∈ C z\in C z ∈ C . In the above r = ∣ z ∣ r=|z| r = ∣ z ∣ , which is known as the modulus of complex number z z z . θ \theta θ is called the argument of z z z , and written as arg ( z ) \text{arg}(z) arg ( z ) , and its value lies between:
− π < arg ( z ) ≤ π \begin{align}
-\pi<\text{arg}(z)\le\pi
\end{align} − π < arg ( z ) ≤ π
Considering the following:
z = r [ cos ( θ + 2 k π ) + i sin ( θ + 2 k π ) ] , k ∈ Z ⇒ z 1 / n = r 1 / n [ cos ( θ + 2 k π ) + i sin ( θ + 2 k π ) ] 1 / n ⇒ z 1 / n = r 1 / n [ cos ( θ + 2 k π n ) + i sin ( θ + 2 k π n ) ] \begin{align*}
&\ z=r[\cos(\theta+2k\pi)+i\sin(\theta+2k\pi)],&&k\in\Z\\
\Rightarrow\ &z^{1/n}=r^{1/n}[\cos(\theta+2k\pi)+i\sin(\theta+2k\pi)]^{1/n}\\
\Rightarrow\ &z^{1/n}=r^{1/n}\left[\cos\left(\frac{\theta+2k\pi}{n}\right)+i\sin\left(\frac{\theta+2k\pi}{n}\right)\right]
\end{align*} ⇒ ⇒ z = r [ cos ( θ + 2 kπ ) + i sin ( θ + 2 kπ )] , z 1/ n = r 1/ n [ cos ( θ + 2 kπ ) + i sin ( θ + 2 kπ ) ] 1/ n z 1/ n = r 1/ n [ cos ( n θ + 2 kπ ) + i sin ( n θ + 2 kπ ) ] k ∈ Z
Therefore, distinct values of z 1 / n z^{1/n} z 1/ n are obtained for:
k = 0 , 1 , 2 , 3 , … , n − 1 k=0,1,2,3,\ldots,n-1 k = 0 , 1 , 2 , 3 , … , n − 1
Example 4: Find out the cube roots of unity.
Given,
z = 1 = 1 ( cos 0 + i sin 0 ) = cos 2 k π + i sin 2 k π , k ∈ Z [ ∵ sin θ = sin ( 2 k π + θ ) ] \begin{align*}
z&=1\\
&=1(\cos0+i\sin0)\\
&=\cos{2k\pi}+i\sin{2k\pi},k\in\Z&&[\because \sin\theta=\sin({2k\pi+\theta})]
\end{align*} z = 1 = 1 ( cos 0 + i sin 0 ) = cos 2 kπ + i sin 2 kπ , k ∈ Z [ ∵ sin θ = sin ( 2 kπ + θ )]
Finding out the cube root:
∴ z 1 / 3 = ( cos 2 k π + i sin 2 k π ) 1 / 3 , k = 0 , 1 , 2 = cos 2 k π 3 + i sin 2 k π 3 , k = 0 , 1 , 2 \begin{align*}
\therefore z^{1/3}&=(\cos{2k\pi}+i\sin{2k\pi})^{1/3},&&k=0,1,2\\
&=\cos{\frac{2k\pi}{3}}+i\sin{\frac{2k\pi}{3}},&&k=0,1,2
\end{align*} ∴ z 1/3 = ( cos 2 kπ + i sin 2 kπ ) 1/3 , = cos 3 2 kπ + i sin 3 2 kπ , k = 0 , 1 , 2 k = 0 , 1 , 2
Substituting the value of z = 1 z=1 z = 1 , and k = 0 , 1 , 2 k=0,1,2 k = 0 , 1 , 2 , we have:
1 1 / 3 = cos 0 + i sin 0 , cos 2 π 3 + i sin 2 π 3 , cos 4 π 3 + i sin 4 π 3 = 1 , − 1 2 + i 3 2 , − 1 2 − i 3 2 = 1 , − 1 ± i 3 2 \begin{align*}
1^{1/3}&=\cos0+i\sin0,\cos{\frac{2\pi}{3}}+i\sin{\frac{2\pi}{3}},\cos{\frac{4\pi}{3}}+i\sin{\frac{4\pi}{3}}\\
&=1,-\frac{1}{2}+i\frac{\sqrt{3}}{2},-\frac{1}{2}-i\frac{\sqrt{3}}{2}\\
&=1,\frac{-1\pm i\sqrt{3}}{2}
\end{align*} 1 1/3 = cos 0 + i sin 0 , cos 3 2 π + i sin 3 2 π , cos 3 4 π + i sin 3 4 π = 1 , − 2 1 + i 2 3 , − 2 1 − i 2 3 = 1 , 2 − 1 ± i 3
Expansions of Cosine and Sine
cos n θ + i sin n θ = ( cos θ + i sin θ ) n = cos n θ + n C 1 . cos n − 1 θ . ( i sin θ ) + n C 2 . cos n − 2 θ . ( i sin θ ) 2 + n C 3 . cos n − 3 θ . ( i sin θ ) 3 + … = cos n θ + i . n C 1 cos n − 1 sin θ − n C 2 cos n − 2 θ . sin 2 θ − i . n C 3 cos n − 3 θ . sin 3 θ + n C 4 cos n − 4 θ . sin 4 θ + … = ( c o s n θ − n C 2 cos n − 2 θ sin 2 θ + n C 4 cos n − 4 θ . s i n 4 θ − … ) + i ( n C 1 cos n − 1 θ . s i n θ − n C 3 cos n − 3 θ . sin 3 θ + … ) \begin{align*}
\cos{n\theta}+i\sin{n\theta}&=(\cos\theta+i\sin\theta)^n\\
&=\cos^n\theta+{}^nC_1.\cos^{n-1}\theta.(i\sin\theta)+{}^nC_2.\cos^{n-2}\theta.(i\sin\theta)^2+{}^nC_3.\cos^{n-3}\theta.(i\sin\theta)^3+\ldots\\
&=\cos^n\theta+i.{}^nC_1\cos^{n-1}\sin\theta-{}^nC_2\cos^{n-2}\theta.\sin^2\theta-i.{}^nC_3\cos^{n-3}\theta.\sin^3\theta+{}^nC_4\cos^{n-4}\theta.\sin^4\theta+\ldots\\
&=(cos^n\theta-{}^nC_2\cos^{n-2}\theta\sin^2\theta+{}^nC_4\cos^{n-4}\theta.sin^4\theta-\ldots)+i({}^nC_1\cos^{n-1}\theta.sin\theta-{}^nC_3\cos^{n-3}\theta.\sin^3\theta+\ldots)
\end{align*} cos n θ + i sin n θ = ( cos θ + i sin θ ) n = cos n θ + n C 1 . cos n − 1 θ . ( i sin θ ) + n C 2 . cos n − 2 θ . ( i sin θ ) 2 + n C 3 . cos n − 3 θ . ( i sin θ ) 3 + … = cos n θ + i . n C 1 cos n − 1 sin θ − n C 2 cos n − 2 θ . sin 2 θ − i . n C 3 cos n − 3 θ . sin 3 θ + n C 4 cos n − 4 θ . sin 4 θ + … = ( co s n θ − n C 2 cos n − 2 θ sin 2 θ + n C 4 cos n − 4 θ . s i n 4 θ − … ) + i ( n C 1 cos n − 1 θ . s in θ − n C 3 cos n − 3 θ . sin 3 θ + … )
From the above, we get:
cos n θ = c o s n θ − n C 2 cos n − 2 θ sin 2 θ + n C 4 cos n − 4 θ . s i n 4 θ − … sin n θ = n C 1 cos n − 1 θ . s i n θ − n C 3 cos n − 3 θ . sin 3 θ + n C 5 cos n − 5 θ . sin 5 θ − … \begin{align}
\cos{n\theta}=cos^n\theta-{}^nC_2\cos^{n-2}\theta\sin^2\theta+{}^nC_4\cos^{n-4}\theta.sin^4\theta-\ldots\\
\sin{n\theta}={}^nC_1\cos^{n-1}\theta.sin\theta-{}^nC_3\cos^{n-3}\theta.\sin^3\theta+{}^nC_5\cos^{n-5}\theta.\sin^5\theta-\ldots
\end{align} cos n θ = co s n θ − n C 2 cos n − 2 θ sin 2 θ + n C 4 cos n − 4 θ . s i n 4 θ − … sin n θ = n C 1 cos n − 1 θ . s in θ − n C 3 cos n − 3 θ . sin 3 θ + n C 5 cos n − 5 θ . sin 5 θ − …
Expansion of Trigonometric Expressions in Power Series
Trigonometric expressions such as sin α \sin\alpha sin α , cos α \cos\alpha cos α can be expanded in the power series of α \alpha α . Considering cos n θ \cos{n\theta} cos n θ :
cos n θ = c o s n θ − n C 2 cos n − 2 θ sin 2 θ + n C 4 cos n − 4 θ . s i n 4 θ − … = cos n θ − n ( n − 1 ) 2 ! cos n − 2 θ . s i n 2 θ + n ( n − 1 ) ( n − 2 ) ( n − 3 ) 4 ! cos n − 4 θ . sin 4 θ − … \begin{align*}
\cos{n\theta}&=cos^n\theta-{}^nC_2\cos^{n-2}\theta\sin^2\theta+{}^nC_4\cos^{n-4}\theta.sin^4\theta-\ldots\\
&=\cos^n\theta-\frac{n(n-1)}{2!}\cos^{n-2}\theta.sin^2\theta+\frac{n(n-1)(n-2)(n-3)}{4!}\cos^{n-4}\theta.\sin^4\theta-\ldots
\end{align*} cos n θ = co s n θ − n C 2 cos n − 2 θ sin 2 θ + n C 4 cos n − 4 θ . s i n 4 θ − … = cos n θ − 2 ! n ( n − 1 ) cos n − 2 θ . s i n 2 θ + 4 ! n ( n − 1 ) ( n − 2 ) ( n − 3 ) cos n − 4 θ . sin 4 θ − …
Now, n θ = α ⇒ n = α θ n\theta=\alpha\Rightarrow n=\frac{\alpha}{\theta} n θ = α ⇒ n = θ α
∴ cos α = cos n θ − α θ ( α θ − 1 ) 2 ! cos n − 2 θ ( sin θ θ ) 2 + α θ ( α θ − 1 ) ( α θ − 2 ) ( α θ − 3 ) 4 ! cos n − 4 θ ( sin θ θ ) 4 − … \begin{align*}
\therefore \cos\alpha=\cos^n\theta&-\frac{\frac{\alpha}{\theta}\left(\frac{\alpha}{\theta}-1\right)}{2!}\cos^{n-2}\theta\left(\frac{\sin\theta}{\theta}\right)^2\\
&+\frac{\frac{\alpha}{\theta}\left(\frac{\alpha}{\theta}-1\right)\left(\frac{\alpha}{\theta}-2\right)\left(\frac{\alpha}{\theta}-3\right)}{4!}\cos^{n-4}\theta\left(\frac{\sin\theta}{\theta}\right)^4-\ldots
\end{align*} ∴ cos α = cos n θ − 2 ! θ α ( θ α − 1 ) cos n − 2 θ ( θ sin θ ) 2 + 4 ! θ α ( θ α − 1 ) ( θ α − 2 ) ( θ α − 3 ) cos n − 4 θ ( θ sin θ ) 4 − …
Now, n → ∞ , θ → 0 n\to\infty, \theta\to0 n → ∞ , θ → 0 , such that α \alpha α is constant, we get:
cos α = 1 − α 2 2 ! + α 4 4 ! − … sin α = α − α 3 3 ! + α 5 5 ! − … \begin{align}
\cos\alpha=1-\frac{\alpha^2}{2!}+\frac{\alpha^4}{4!}-\ldots\\
\sin\alpha=\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots
\end{align} cos α = 1 − 2 ! α 2 + 4 ! α 4 − … sin α = α − 3 ! α 3 + 5 ! α 5 − …
We get:
tan α = sin α cos α = α − α 3 3 ! + α 5 5 ! − … 1 − α 2 2 ! + α 4 4 ! − … = ( α − α 3 3 ! + α 5 5 ! − … ) { 1 − ( α 2 2 ! − α 4 4 ! + … ) } − 1 = ( α − α 3 3 ! + α 5 5 ! − … ) { 1 − ( α 2 2 ! − α 4 4 ! + … ) + ( α 2 2 ! − α 4 4 ! + … ) 2 + … } = α + 1 3 α 3 + 2 15 α 5 + … + ∞ \begin{align*}
\tan\alpha&=\frac{\sin\alpha}{\cos\alpha}=\frac{\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots}{1-\frac{\alpha^2}{2!}+\frac{\alpha^4}{4!}-\ldots}\\
&=\left(\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots\right)\left\{1-\left(\frac{\alpha^2}{2!}-\frac{\alpha^4}{4!}+\ldots\right)\right\}^{-1}\\
&=\left(\alpha-\frac{\alpha^3}{3!}+\frac{\alpha^5}{5!}-\ldots\right)\left\{1-\left(\frac{\alpha^2}{2!}-\frac{\alpha^4}{4!}+\ldots\right)+\left(\frac{\alpha^2}{2!}-\frac{\alpha^4}{4!}+\ldots\right)^2+\ldots\right\}\\
&=\alpha+\frac{1}{3}\alpha^3+\frac{2}{15}\alpha^5+\ldots+\infin
\end{align*} tan α = cos α sin α = 1 − 2 ! α 2 + 4 ! α 4 − … α − 3 ! α 3 + 5 ! α 5 − … = ( α − 3 ! α 3 + 5 ! α 5 − … ) { 1 − ( 2 ! α 2 − 4 ! α 4 + … ) } − 1 = ( α − 3 ! α 3 + 5 ! α 5 − … ) { 1 − ( 2 ! α 2 − 4 ! α 4 + … ) + ( 2 ! α 2 − 4 ! α 4 + … ) 2 + … } = α + 3 1 α 3 + 15 2 α 5 + … + ∞
Therefore, we get:
tan α = α + 1 3 α 3 + 2 15 α 5 + … + ∞ \begin{align}
\tan\alpha=\alpha+\frac{1}{3}\alpha^3+\frac{2}{15}\alpha^5+\ldots+\infin
\end{align} tan α = α + 3 1 α 3 + 15 2 α 5 + … + ∞